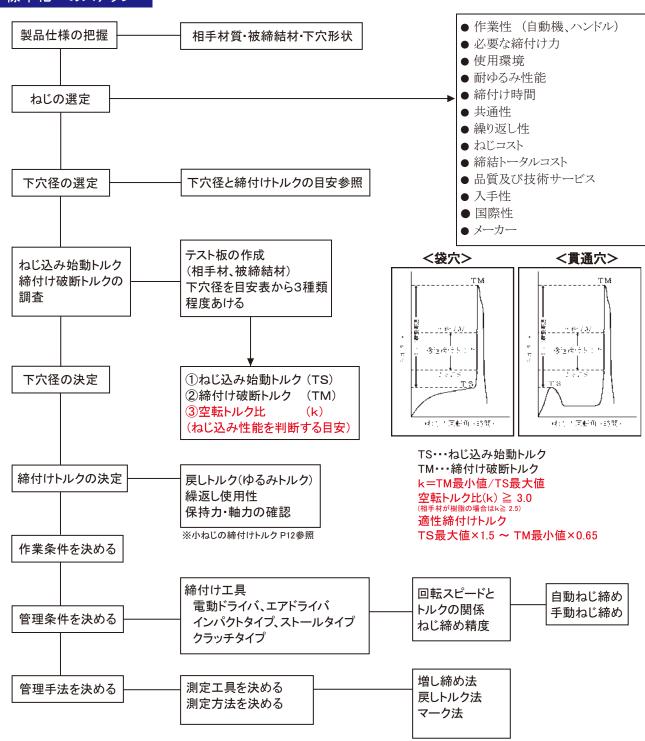
NITTOSEIKO

金属締結


ファスニング ソリューション

タップタイトは、ねじ締め作業の信頼性とトータルコストダウンに役立つ理想的なセルフタッピングスクリューです。めねじ加工を行いながら、締結作業が行えます。

標準化へのステップ

金属用ねじ

			汎用セルフタッピング用		薄金属板用	軟質金属用
	製品名	Sタイト / Cタイト	Bタイト	RSタイト	ラミタイト	アルミタイト
	形 状		A STATE OF THE STA		ALLE STATE OF THE	
	主な使用製品	家電自動車部品	家電 自動車部品	複写機 プリンタ エアコン	洗濯機・乾燥機 ファンヒータ 電子レンジ	パソコン・モバイル端末 給湯器・薄型テレビ 自動車部品
推	空転防止(ねじバカ)	0	0	©	©	0
奨する機能	ゆ る 一般環境下 み	0	0	0	0	0
機能	防 振動環境下	0	0	0	Δ	0
	特長	・小ねじピッチ	・タッピン2種相当・樹脂材締結との併用も可	・ねじ込み始動トルクが低く 締付け破断トルクは大 ・耐緩み性能に優れる	・t=0.35〜の薄板締結での 空転防止	・軟質金属締結での焼付の 防止
	ねじ部断面形状	▲形	▲形	先端▲形+胴部●形	先端▲形+胴部●形	▲形
仕	適応相手材	金属板	金属板 樹脂材	金属板	薄金属板 (t=0.35~0.8)	アルミ合金 (軟質金属)
様等	対応下穴形状	プレス、バーリング、ドリル	プレス、バーリング、ドリル	プレス、バーリング、ドリル	プレス、ピアス、バーリング、ドリル	袋穴・貫通穴
	製造可能サイズ 呼び径(mm)	1.4~5	1.0~5	3 、 4	3 、 4 、 5	1.4~5

製品名				ゆるみ防止用		成形粉飛散防止
		製品名	アプスロック	NCグリップ	ロングロック	CPグリップ
形状		形 状				
			OA機器・カメラ	自動車部品・カメラ	めがね・自動車部品	携帯及び車載用通信機
		主な使用製品	家電	通信機器	モータ	薄型テレビ・パソコン・デジカメ DVD・プロジェクター
推		空転防止(ねじバカ)	-	_	_	-
奨する機能	ゆるみ	一般環境下	©	©	©	-
機能	み防止	振動環境下	©	©	©	_
	•		・ねじ山フランクがめねじフランク面	・ねじ部に塗布したエポキシ系接着剤	・ねじ部のナイロンがめねじとの	・ねじ込み時に発生する成形粉の
		特長	に干渉してゆるみ防止	により強固な固着	摩擦を高めゆるみ防止・繰り返し使用可	飛散防止
	ね	は部断面形状	▲形	-	●形	-
仕	士 適	適応相手材	金属板、軟質金属	金属板、軟質金属	金属板、軟質金属	金属板、軟質金属
様等	文	付応下穴形状	めねじ	めねじ	めねじ	めねじ、袋穴、貫通穴
		設造可能サイズ Fび径(mm)	1.4~4	1.4~5(ねじ支給の場合~10)	1.0~5(ねじ支給の場合~16)	1.4~5

【材料】

軟鋼線材(SWCH16A~18A)に浸炭焼入を施してあります。 その他にステンレス鋼線材等にも対応しますので、ご相談ください。

【形状寸法】

頭部の形状は、JIS規格に準じます。特殊な頭部形状についてはご相談ください。 また、段付き等の特殊形状品につきましても、ご相談ください。

【表面処理】

環境対応型の三価クロメート(干渉色、黒色)、ニッケル、クロムなどを標準としています。

軟 質 金 属 用セルフタッピングス ク リュー

アルミタイト

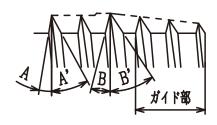
ALUMITITE®

PAT

アルミ材などの軟質金属締結での焼付きを防止

【ポイント】

アルミダイキャストなどに代表される**軟質金属に通常のセルフタッピンねじを用いた時、**焼き付きや凝着現象による**ねじ浮きが起きやすくなります。**


また、軟質金属では、めねじの塑性変形が生じやすいこと、鋼製のおねじと熱膨張係数が異なることによるゆるみが懸念されるなど、ねじ締結上の問題があり、これらの要求を解決するために開発したものです。

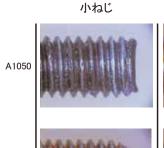
【性能の特徴】

- ねじ込みトルクが低い
- 相手材との焼き付きや 凝着を抑制
- 高いゆるみ止め効果を 発揮
- 振動や温度変化により、 ゆるみ止め効果が促進 される
- 繰り返し使用が可能

【ねじの特長】

- 比較的角度の大きいBの山でめねじを成形し、それに続くAの山はめねじとの摩擦低減のため角度が小さくなっています。
- 相手材が軟質金属で、摩擦粉等の発生を 嫌う製品・部品類には、CPグリップとの 併用をお奨めします。

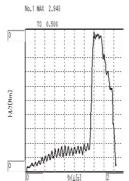
【凝着の検証】


相手材にねじ込み振動試験終了後、 抜き取った各ねじ部の拡大写真です。 写真の白い部分は凝着した相手材 (アルミ)です。

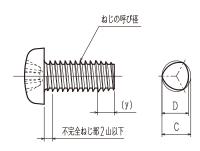
□振動試験条件

振動加速度 4.5G 複振幅 2mm 波数 33.3Hz 時間 2時間

【使用事例】


車間距離センサーボイラー ベッドライト(車)パソコン 通信ボックスエアバック センサハウジングエアサスコンプレッサワイパーモータウィンドウレギュレータ

Sタイトのねじ込み波形



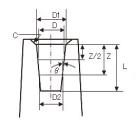
アルミタイトのねじ込み波形

※この写真は、アルミの凝着をわかりやすく見せるため、六価クロメートでのねじサンプルを使用しております。

【標準寸法】

(単位: mm)

					(+12: 1111)
呼び径	ピッチ	ねじ	外 径	テーパー長さ	ねじり強さ
呼び往	L 97	φC	D	(y)	(単位)
1.4	0. 3	1. 42~1. 48	1. 36~1. 42	(0.6)	9. 31(cN·m)
1.7	0. 35	1.69~1.75	1.62~1.68	(0.7)	19. 7(cN·m)
2	0. 4	1.96~2.04	1.88~1.96	(0.8)	34. 5(cN·m)
2. 6	0. 45	2. 58~2. 66	2. 49~2. 57	(1.35)	1. 03(N·m)
3	0. 5	2. 99~3. 07	2. 89~2. 97	(1. 5)	1. 71(N·m)
4	0. 7	4. 00~4. 08	3.86~3.94	(2. 1)	3. 89(N·m)
5	0.8	5. 01~5. 09	4. 85~4. 93	(2. 4)	8. 28(N·m)
6	1. 0	6.09~6.19	5. 89~5. 99	(3. 0)	13. 66(N·m)


※締付け破断トルクは、座面抵抗によって異なりますが、ねじり強さ の約50%UPが目安です。

※材質ステンレスの場合製品は、標準寸法とは若干異なります。

※ねじ長さは、L寸法表(P18)を参照してください。

【目安使用条件】

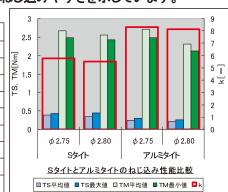
<成形穴の下穴設定>

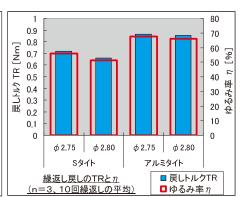
- ・左図において、おねじの実質 ねじ込み深さをZ、成形穴の 深さをL、下穴径をD、面取り をCとすると下穴径Dを取る位 置は、実質ねじ込み深さZの
- 1/2 の位置に取る。 ただし、抜きテーパは3°以下で面取り部とねじ先端ガイ ド部は、Zに含まない。
- 一般に、 2*θ* ≦3° D1=D+Z $\tan \theta$
 - D2=D-Ztan θ
 ・貫通穴 (Z>L)の時、DをL/2の位置に取る・袋穴 (Z<L)の時、DをZ/2の位置に取る

計算条件 相手材引張応力 ADC12相当 σ =330MPa(N/mm2) 摩擦係数 μ=0.15 記載方法 上段: 目安下穴径 (mm) 下段: 目安締付けトルク (N·m)

	入口面取り		嵌 合 長										
呼び径 ピッチ	C寸法最小値 (mm)	0.8 mm	1	1.5	2	2.5	3	4	5	6	8	10	12
1.4		1.19	1. 20	1. 25	1.27	1.29	1.31						
P=0.3	0.22	0.06~0.12	0.08~0.15	0.11~0.16	0.11~0.16	0.13~0.16	0.14~0.16						
1.7		1.40	1.41	1.46	1.48	1.51	1.53	1.55					
P=0.35	0.24	0.09~0.18	0.12~0.18	0.15~0.18	0.16~0.22	0.19~0.25	0.19~0.25	0.21~0.25					
2			1.66	1.70	1.73	1.75	1.78	1.81					
P=0.4	0.27		0.18~0.37	0.25~0.43	0.31~0.43	0.38~0.43	0.40~0.43	0.45~0.46					
2.6					2.28	2.30	2.33	2.37	2.41				
P=0.45	0.30				0.62~1.03	0.72~1.12	0.79~1.12	0.96~1.12	1.07~1.12				
3					2.63	2.68	2.71	2.76	2.78	2.80			
P=0.5	0.32				0.85~1.55	0.96~1.76	1.07~1.79	1.27~1.79	1.40~1.79	1.68~1.79			
4							3.51	3.59	3.60	3.65	3.71	3.74	
P=0.7	0.44						2.22~3.78	2.55~4.07	3.20~4.38	3.46~4.38	4.03~4.38	4.24~4.38	
5								4.47	4.53	4.54	4.60	4.67	4.71
P=0.8	0.50							4.44~7.95	5.10~8.59	6.12~8.59	7.33~8.59	8.01~8.59	8.05~8.59
6									5.37	5.45	5.49	5.58	5.59
P=1	0.67								8.62~15.09	9.57~15.09	11.53~15.09	12.64~15.09	15.18~16.26

(ご注意) 最適値は被締結材や相手材のグレード等により変動するため、上表の数値はあくまで目安値とし、必ずねじ込み試験にて確認願うことを前提とします。 公差は一般に±0.03mmを基準とします。


【ねじ込み性能】


アルミタイトはSタイトと比べると、

- めねじを成形するトルク(TS:始動トルク)が低い
- 空転トルク比k値(=TM最小/TS最大)が高い

このことはアルミタイトのねじ込みやすさを示しています。

		(単位:mm)
穆	Sタイト	STP 3X8
ľ	アルミタイト	LTP 3X8 S020333
	材質・厚さ	ADC12材 t=4.1~4.3
		ドリル穴
相手材	下穴形状•穴径	φ2.75
		φ2.80
	嵌合長さ	約4.2
424	被締結材・厚さ・穴径	SPCC t=1.0 φ3.6
締結条件	回転数	締付け時300rpm
14	荷重	49N

薄 金 属 板 用 セルフタッピング スクリュー

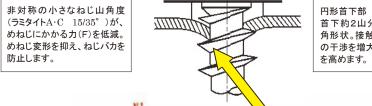
ラミタイト®

LAMITITE®

軽量化時代の薄板化に対応

【ポイント】

地球資源の有効利用や世界レベルで の価格競争が激化する中、使用鋼板が ますます薄板化しています。


そのようなニーズに対応するため、薄 板でもバーリング無しで安心して使える ねじを製品化しました。

【性能の特徴】

- 高トルクでの薄板締付け が可能
- 高い保持力
- 締結物の下穴ズレがあっ てもねじ込み可能
- 作業者の危険防止のため、 ねじ先端は平先形状

【ねじの特長】

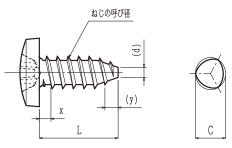
首下約2山分は、円形に近い三 角形状。接触面を広げ、めねじと の干渉を増大。締付け最大トルク

> ラミタイト A · C

Bタイト

【使用事例】

ファンヒーター 給湯器 冷蔵庫 エアコン 洗濯機 自販機 換気扇 システムキッチン プリンター


【種類と比較】

種類	THE STATE OF THE S		
	ラミタイトA	ラミタイトC	ラミタイトB
ねじ部形状	(首下)円に近い三角形 (先端)三角形	全体円形	(首下)円に近い三角形 (先端)三角形
ねじ材質	鉄	鉄	ステンレス(SUS410)
ねじ山角度	非対称山(50°)	非対称山(50°)	60°
板厚	t0.35~t0.8	t0.35~t0.6	t0.35~t0.8
被締結物厚さ	t2.5以下 (薄板)	t2.5以上(厚板) (注)	t2.5以下 (薄板)

N2

(注)ラミタイトCは、被締結物が 厚い場合に対応するもので、 この場合、被締結物の通し 穴の寸法は、極力小さ目に 設定して下さい。

【ラミタイトA標準寸法】

(単位: mm)

呼び径	ピッチ	ねじ外径(φC)	標準L寸	L寸公差	首下略円形部 (x)	先端径 (d)	テーパー長さ (y)
3	1.058	3.03~3.13	6. 8. 10	±0.8	(2.1)	(0.9)	(1.8)
4	1.411	4.05~4.17	8. 10. 12	±0.8	(2.8)	(1.3)	(2.7)
5	1.588	5.04~5.16	10. 12. 14	±0.8	(3.2)	(2.0)	(3.2)

【ラミタイトA下穴表】

(単位: mm)

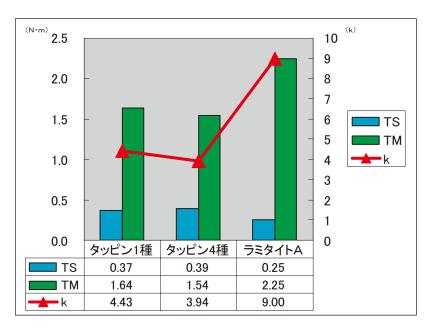
													,
呼び径						板		厚					
	t0. 2	t0. 3	t0. 35	t0. 4	t0. 45	t0. 5	t0. 6	t0. 7	t0. 8	t0. 9	t1. 0	t1. 2	t1. 4
3	2.03	2.07	2.10	2.12	2.16	2.19	2.23	2.28	2.31	2.36			
4		2.80	2.85	2.89	2.92	2.95	3.02	3.08	3.13	3.18	3.22	3.29	
5				3.68	3.73	3.77	3.85	3.90	3.96	4.01	4.05	4.14	4.20

※ パンチ穴形状の下穴で締結可能

(ご注意) 最適値は被締結材や相手材のグレード等により変動するため、上表の数値はあくまで目安値とし、必ずねじ込み試験にて確認願うことを前提とします。 公差は一般に±0.03mmを基準とします

【ねじ込み性能】

ラミタイトはタッピンねじと比べると、


- めねじを成形するトルク(TS: 始動トルク)が低い・・・・・作業者への負担を軽減
- 空転トルク比k値(=TM最小/TS最大)が高い・・・・・薄板締結でねじの空転が起こりにくい
 - ⇒ 作業効率のアップと締結不良の防止に役立ちます。

調査条件

(単位:mm)

タッピンねじ (1種)	バインド頭4X10		
タッピンねじ (4種)	バインド頭4X10		
ラミタイト	バインド頭4X10		
材質・厚さ	SPG材 t=0.4		
	パンチ穴		
下八形状•八佳	φ 2.70		
被締結材・厚さ・穴径	SPG材 t=0.35 		
回転数	締付け時120rpm		
荷重	70N		
	タッピンねじ (4種) ラミタイト 材質・厚さ 下穴形状・穴径 被締結材・厚さ・穴径 回転数		

TS = ねじ込み始動トルク TM = 締付け破断トルク k = 空転トルク比

【繰り返し戻しトルク性能】

相 手 材: SPCC鋼板 t=0.6 下穴径 ϕ 3.02 被締結物: SPCC鋼板 t=0.8 通し穴径 ϕ 4.5 ね じ: ラミタイトDTB4X10 三価クロメート (F1) F038

		測 定 值(N·m)									
	1回目	2回目	3回目	4回目	5回目	6回目	7回目	8回目	9回目	10回目	平均
締付けトルク	0.82	0.87	0.89	0.93	0.90	0.84	0.81	1.01	0.87	0.92	0.885
戻しトルク	0.42	0.46	0.50	0.56	0.56	0.59	0.60	0.60	0.57	0.62	0.549
ゆるみ率	51%	53%	57%	61%	62%	69%	74%	59%	66%	68%	62.0%

鋼 板 用 セルフタッピング ス ク リ ュ ー

RSタイト

R

RSTITE®

高い締付け最大トルク

の秘密

鋼板締結で作業性を高めるセルフタッピンねじ

【ポイント】

現在、塑性変形ねじの代表としてタップタイトが多く使用されています。 しかしながら大量に使われるからこそ、ねじ込み易さ・耐ゆるみ性能・作業者 への負担軽減が求められてきました。

RSタイトは、これらの二一ズに対応するために製品化されたものです。 カップ頭仕様は、相手材が潤滑鋼板でも高い戻しトルクが得られます。

【ねじの特長】

円形胴部で 高い締付け最大トルク

胴部はほぼ円形。接触面を増やし、 締付け破断トルク、

および保持力を増大。ねじバカ、ゆるみを防ぎます。

先端三角形状で ラクラクねじ込*み*

ねじ先端は略三角形。 接触面が少なく ねじ込みトルクを 低減。

使い易さの秘密

【先端形状の提案】

作業時の手などの損傷防止策として先端丸先形状を提案します。

【性能の特徴】

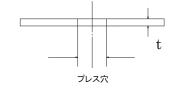
- トルク設定範囲が広い ため作業性良好
- 高トルクでの締付けが 可能
- 耐ゆるみ性能が高い
- 繰り返し使用が可能
- RSタイトを抜き取り後、 小ねじの使用が可能

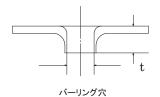
【使用事例】

複写機 プリンター ファンヒータ 充電器

【標準寸法】

(単位: mm)


呼び径	ピッチ	ねじ外径 (φC)	標準L寸	L寸公差
3	0.5	2.99~3.07	6, 8, 10	0 -0.8
4	0.7	3.99~4.07	8, 10 ,12	0 -0.8


【目安下穴径】

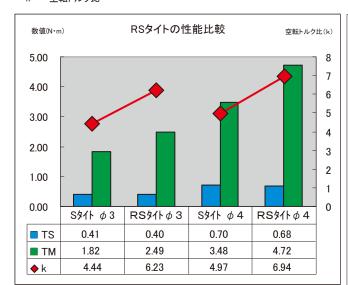
(ご注意) 最適値は被締結材や相手材のグレード等により変動するため、下表の数値はあくまで目安値とし、必ずねじ込み試験にて確認願うことを前提とします。 公差は一般に±0.03mmを基準とします。 (単位: mm)

呼び径	下穴径	板 厚							
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		t 0.6	t 0.8	t 1.0	t 1.2	t 1.6	t 2.0		
3	バーリング穴	2.65	2.73	2.78	2.78				
3	プレス穴				2.73	2.78	2.78		
4	バーリング穴		3.71	3.71	3.71				
4	プレス穴					3.76	3.78		

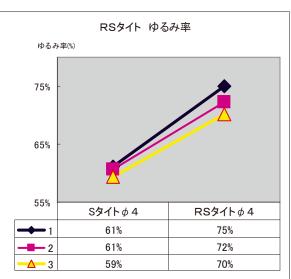
【下穴形状】

【ねじ込み性能】

RSタイトはSタイトと比べると、


- 空転トルクが高い・・・・・・作業トルク範囲を広く設定できる
- 戻しトルクが高い・・・・・・・ゆるみに対して強い
 - ⇒ 作業効率のアップと高い締結信頼性が得られます。

RSタイト トルク性能


RSタイト ゆるみ率

Tf=設定トルク

TS = ねじ込み始動トルク TM = 締付け破断トルク k = 空転トルク比

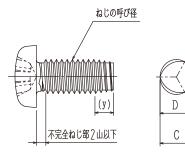
平板SECC(t1.0 φ3.51)Tf =1.0N·m
 平板SECC(t1.2 φ3.59)Tf =1.2N·m
 平板SECC(t1.6 φ3.70)Tf =1.3N·m

タップタイト

スタンダードタイプ

Sタイト®

S-TITE®



鋼板用セルフタッピンねじ

Sタイトを抜き取った後、小ねじのねじ込みが可能

(単位: mm)

【標準寸法・強度】

呼び径	ピッチ	十字穴			テーパー長さ	ねじり強さ	引張荷重
1,012			φC	D	(y)	(N • m)	(N)
1.4	0.3		1.37~1.43	1.31~1.37	-	0.10	430
1.7	0.35	0番	1.67~1.73	1.60~1.66	-	0. 22	760
2	0.4		1.96~2.04	1.88~1.96	-	0.40	1060
2	0.4		1.96~2.04	1.88~1.96	(1.6)	0.44	1370
2.6	0.45		2.57~2.65	2.48~2.56	(1.8)	1.17	2450
3	0.5	JIS準拠	2.97~3.05	2.87~2.95	(2.0)	1.76	3330
4	0.7		3.99~4.07	3.85~3.93	(2.8)	4.11	5780
5	0.8		5.00~5.08	4.84~4.92	(3.2)	8.62	9400

※締付け破断トルクは、座面抵抗によって異なりますが、ねじり強さの約50%UPが目安です。 ※ねじ長さは、L寸法表(P18)を参照してください。

【目安使用条件】

計算条件 相手材引張応力 SPCC相当 σ =372MPa(N/mm2) 摩擦係数 μ =0.13

記載方法 上段:目安下穴径(mm) 下段:目安締付けトルク(N·m)

			わじに 2: 27 2 - 1									
			ねじ込み深さ									
		0. 4	0. 5	0. 6	0. 8	1. 0	1. 2	1. 6	2. 0	2. 6	3. 2	4. 0
	1. 4		1.20	1.21	1.22	1. 24	1.26					
	1.4		0.06~0.10	0.06~0.12	0.09~0.15	0.11~0.18	0.11~0.19					
	1. 7		1.48	1.49	1.51	1.52	1.53					
			0.08~0.13	0.09~0.17	0.12~0.21	0.14~0.25	0.17~0.30					
	2				1.76	1.78	1.80	1.83	1.85			
	2				0.15~0.29	0.21~0.39	0.24~0.43	0.27~0.50	0.35~0.53			
呼び	2. 6				2.33	2.34	2.36	2.38	2.41	2.43	2.46	
径					0.32~0.59	0.39~0.70	0.47~0.77	0.57~0.92	0.66~0.99	0.75~1.29	0.75~1.26	
	3				2.70	2.72	2.74	2.76	2.78	2.81	2.86	2.86
	3				0.42~0.78	0.53~0.92	0.60~1.02	0.75~1.21	0.84~1.51	0.96~1.66	0.95~1.63	1.18~2.03
	4				3.61	3.64	3.67	3.71	3.75	3.78	3.81	3.83
	4				0.75~1.33	0.90~1.55	1.00~1.70	1. 28~2.00	1.44~2.11	1.61~2.74	1.97~2.67	1.98~3.34
	5				4.57	4.62	4.64	4.66	4.71	4.77	4.80	4.81
	,				1.17~2.13	1.39~2.27	1.55~2.73	2.07~3.21	2.33~3.40	2.59~3.50	2.57~4.31	3.21~5.39

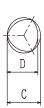
(ご注意) 最適値は被締結材や相手材のグレード等により変動するため、上表の数値はあくまで 目安値とし、必ずねじ込み試験にて確認願うことを前提とします。 アルミ・亜鉛ダイキャスト等につきましては、アルミタイトのご使用をお勧めします。 タップタイト

スタンダードタイプ

【標準寸法▪強度】

Cタイト®

C-TITE®


鋼板用セルフタッピンねじ

小ねじとの互換性があり、ナット合わせが可能

(単位: mm)

おじの呼び径 (y)

不完全ねじ部2山以下

呼び径	ピッチ	ねじ	外 径	テーパー長さ	ねじり強さ	引張荷重
17 O IE		φC	D	(y)	(N · m)	(N)
2	0. 4	1.89~1.98	1.81~1.90	(1.6)	0. 38	1270
2. 6	0. 45	2. 48~2. 58	2. 39~2. 49	(1.8)	0. 98	2350
3	0. 5	2. 87~2. 98	2.77~2.88	(2. 0)	1. 56	3130
4	0. 7	3.84~3.97	3. 70~3. 83	(2.8)	3. 62	5390
5	0.8	4. 84~4. 97	4. 68~4. 81	(3. 2)	7. 74	8910

※締付け破断トルクは、座面抵抗によって異なりますが、ねじり強さの約50%UPが目安です。 ※ねじ長さは、L寸法表(P18)を参照してください。

【目安使用条件】

計算条件 相手材引張応力 SPCC相当 σ =372MPa(N/mm2) 摩擦係数 μ =0.13

記載方法 上段:目安下穴径(mm) 下段:目安締付けトルク(N·m)

					ねじ込	み深さ			
		0. 8	1. 0	1. 2	1. 6	2. 0	2. 6	3. 2	4. 0
	0	1. 70	1. 72	1. 73	1. 77	1. 78			
	2	0. 14~0. 30	0. 17~0. 35	0. 20~0. 38	0. 22~0. 38	0. 28~0. 47			
	2. 6	2. 25	2. 26	2. 28	2. 30	2. 33	2. 35	2. 38	
	2. 0	0. 26~0. 53	0. 32~0. 62	0. 37~0. 69	0. 46~0. 82	0. 53~0. 88	0. 60~0. 91	0. 74~1. 12	
呼び	3	2. 62	2. 64	2. 66	2. 68	2. 70	2. 73	2. 78	2. 78
び 径	3	0. 35~0. 70	0. 42~0. 82	0. 48~0. 90	0.60~1.06	0. 75~1. 33	0.88~1.47	0.76~1.01	0. 95~1. 26
1		3. 49	3. 52	3. 55	3. 59	3. 63	3. 66	3. 69	3. 71
	4	0. 60~1. 19	0. 73~1. 39	0.84~1.52	1. 03~1. 79	1. 16~1. 89	1. 30~1. 94	1. 60~2. 39	1. 61~2. 09
	5	4. 44	4. 49	4. 51	4. 53	4. 58	4. 63	4. 67	4. 68
	0	0. 94~1. 76	1. 12~2. 01	1. 34~2. 41	1. 66~2. 83	1.86~2.99	2. 08~3. 08	2. 56~3. 79	2. 57~3. 32

(ご注意) 最適値は被締結材や相手材のグレード等により変動するため、上表の数値はあくまで目安値とし、必ずねじ込み試験にて確認願うことを前提とします。 アルミ・亜鉛ダイキャスト等につきましては、アルミタイトのご使用をお勧めします。公差は一般に±0.03mmを基準とします。

参考資料

小ねじの目安締付けトルク (強度区分4.8の目安値) au 1 = 単体ねじり強さ au ねじり強さ au au

au = 目安締付けトルク au = 0.75X引張り強さ (引張り強さ = σ) (T1 σ 90%)

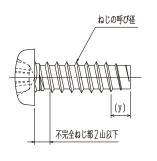
Tf限界= 限界締付けトルク d1 = 谷径の最大値 鋼小ねじ σ = 420N/mm 2

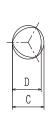
(単位:N·m)

特性	M2	M2.2	M2.3	M2.5	M2.6	М3	M3.5	M4	M4.5	M5	M6	M8
T1	0.21	0.26	0.36	0.44	0.52	0.82	1.26	1.89	2.83	3.99	6.62	16.46
T2	0.31	0.40	0.54	0.66	0.78	1.23	1.90	2.84	4.25	5.98	9.92	24.70
Tf	0.19	0.24	0.33	0.40	0.47	0.74	1.14	1.70	2.55	3.59	5.95	14.82
Tf限界	0.25	0.32	0.44	0.53	0.62	0.99	1.52	2.27	3.40	4.79	7.94	19.76

タップタイト

スタンダードタイプ


Bタイト®



鋼板用セルフタッピンねじ

樹脂材へのセルフタップも可能

【標準寸法・強度】

							(単位: mm)
呼び径	ピッチ	十字穴	ねじ	外 径	テーパー長さ	ねじり強さ	引張荷重
		, , , ,	φC	D	(y)	(N • m)	(N)
1.4	0. 45		1. 37~1. 43	1. 31~1. 37	-	0. 10	430
1. 7	0. 5	0番	1.67~1.73	1.60~1.66	-	0. 22	760
2	0. 635		1.96~2.04	1.88~1.96	-	0. 40	1060
2	0. 635		1.96~2.04	1.88~1.96	(1. 2)	0. 40	1170
2. 6	0. 907		2. 56~2. 64	2. 47~2. 55	(1.8)	0. 97	2050
3	1. 058	JIS準拠	2. 95~3. 05	2. 85~2. 95	(2. 1)	1. 47	2740
4	1. 411		3. 95~4. 05	3.81~3.91	(2. 8)	3. 43	4700
5	1. 588		4. 94~5. 06	4. 78~4. 90	(3. 1)	6. 46	7150

※締付け破断トルクは、座面抵抗によって異なりますが、ねじり強さの約50%UPが目安です。 ※ねじ長さは、L寸法表(P18)を参照してください。

【目安使用条件】

計算条件 相手材引張応力 SPCC相当 σ =372MPa(N/mm2)

摩擦係数 μ=0.13

記載方法 上段:目安下穴径(mm) 下段:目安締付けトルク(N·m)

						4	ねじ込み深さ	Ş				
		0.4	0.5	0.6	0.8	1.0	1.2	1.6	2.0	2.6	3.2	4.0
	1.4	1.15	1.16	1.17	1.18	1.20	1.24					
	1.4	0.03~0.07	0.04~0.09	0.04~0.10	0.05~0.13	0.06~0.14	0.06~0.13					
	1.7		1.40	1.43	1.46	1.49	1.52					
	1.7		0.06~0.14	0.09~0.15	0.09~0.15	0.10~0.20	0.10~0.23					
	2			1.62	1.64	1.67	1.70	1.74	1.77	1.80		
	2			0.10~0.25	0.12~0.29	0.14~0.34	0.16~0.37	0.19~0.44	0.21~0.48	0.25~0.54		
呼び	2.6			2.16	2.21	2.24	2.28	2.31	2.36	2.40	2.43	
径	2.0			0.20~0.34	0.19~0.40	0.22~0.45	0.25~0.50	0.30~0.59	0.32~0.63	0.35~0.67	0.34~0.64	
	3			2.44	2.47	2.54	2.60	2.65	2.70	2.74	2.76	2.80
	3			0.22~0.40	0.28~0.68	0.32~0.75	0.34~0.78	0.40~0.92	0.44~0.99	0.52~1.17	0.59~1.30	0.66~1.43
	4				3.22	3.32	3.38	3.47	3.54	3.57	3.62	3.70
	4				0.46~1.17	0.52~1.29	0.59~1.43	0.70 ~ 1.65	0.69~1.57	0.96~2.20	1.01~2.29	1.03~2.30
	5				4.07	4.17	4.21	4.31	4.40	4.48	4.57	4.61
	J				1.02~2.20	1.17~2.55	1.41~2.80	1.23~2.88	1.39~3.20	1.59~3.59	1.66~3.55	1.89~4.06

(ご注意) 最適値は被締結材や相手材のグレード等により変動するため、上表の数値はあくまで 目安値とし、必ずねじ込み試験にて確認願うことを前提とします。 公差は一般に±0.03mmを基準とします。

ゆるみ防止用

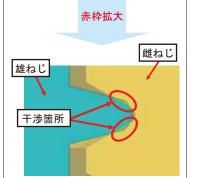
スクリュー

アプスロック

APSLOK®

PAT

ねじ山干渉型ゆるみ止めねじ


【ポイント】

ねじに求められる機能で最重要課題は耐ゆるみ性能です。 低コストで高いゆるみ止め効果を有したねじ干渉型ゆるみ止め ねじを紹介します。

【ねじの特長】

- 雄ねじのねじ山を雌ねじに干渉させることにより、ゆるみ止め効果を発揮します。
- 干渉点をバラツキの少ないフランク面にしたことにより、安定した干渉を実現します。

雄ねじ

【標準寸法】

(単位: mm)

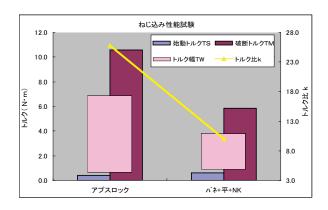
呼び径	ピッチ	ねじ	外径
一・テひ往	レッテ	φC	D
1.4	0. 3	1.40~1.46	1.32~1.38
1. 7	0. 35	1.70~1.76	1.62~1.68
2. 0	0. 4	2.00~2.06	1.92~1.98
2. 3	0. 4	2. 26~2. 32	2. 16~2. 22
2. 6	0. 45	2. 59~2. 65	2. 51~2. 57
3. 0	0. 5	2. 99~3. 07	2.89~2.97
4. 0	0. 7	3. 95~4. 03	3.85~3.93
5. 0	0. 8	4. 93~5. 01	4. 83~4. 91
6. 0	1. 0	5. 90~5. 98	5. 68~5. 76
-	N/ L R E	+/+ + +/+ + /D4 N	ナヤロコーノバン

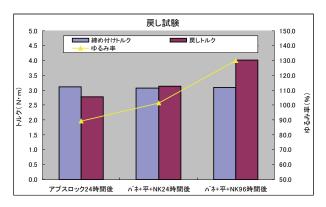
※ねじ長さは、L寸法表(P18)を参照してください。

【使用事例】

可能

【性能の特徴】


雌ねじ成形部への締結用


● 耐ゆるみ性能が高い● 接着剤締結が不要

● 調整ねじとして使用

【ねじ込み性能】

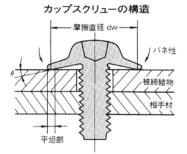
相 手 材:M5ナット タップ穴 相手材厚み t=6. 2 (実質タップ長さ約5 mm) 被締結材:S P C C 平ワッシャー 通し穴径= ϕ 5. 4 O にて、ねじ込み長さを同等に調整 ね じ:アプスロックなべ頭 5 X 1 4 三価クロメート パネ+平座金付き 小ねじなべ頭 5 X 1 5 三価クロメート+N K グリップ付き

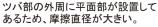
フ ラ ン ジ 型 ゆるみ 防止 用 ス ク リ ュ ー

カップスクリュー®

CUPSCREW®

ねじ、ばね、平座金を一体成形し、コスト低減 自動ねじ締付機に最適


【ポイント】


市場には多くのねじが使われており、その中で最重要課題は、耐ゆるみ性能です。

このようなニーズに応えるためにねじ、ばね、平座金を一体成形し、耐ゆるみ性能を保有したねじを製品化しました。

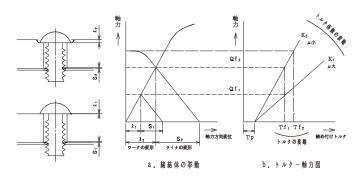
●頭部とツバ部を一体成形することにより、すべ り面発生を排除しました。

●ツバ部をカップ状にすることにより、振動やヒートサイクルによる相手材の変形を吸収し、 ゆるみを防止できます。

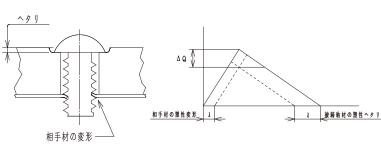
【性能の特徴】

- 耐ゆるみ性能が高い。
- 高い締付け最大トルクが 得られる。
- 振動や温度変化があって もゆるみにくい。
- 座金が不要。
- ねじ部をセルフタッピン ねじにすることで、確実な ゆるみ止め効果を発揮。

【使用対象】

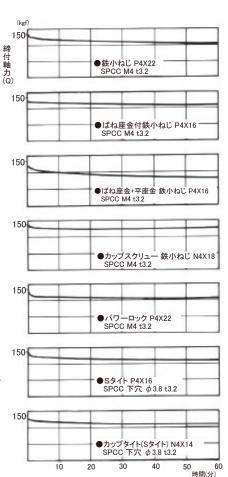

特に、ゆるみが懸念され、 高い締付力を求められる 個所に使用すると最適です。

参考資料 各種座面形状

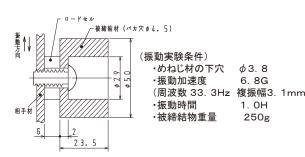

	ボッチ付	アンダーカット	標準	リング付	ギザ付
座面形状					
目的・用途	ゆるみ止め アース取りに使用	首下Rのヌスミ取り		アース取り	セレーション (12等分の18等分) 右に廻し:はがし 左に廻し:ゆるみ止め

○信頼性のある締結のために

•トルク係数に注意 ---知らず知らずに締めすぎに!



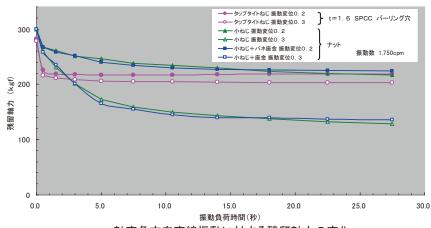
トルク係数(K)とトルク(Tf) 軸力(Qf)


締付けトルクを高くし過ぎた時の塑性変形

・締め過ぎると変形も大きい。収縮すると大きなガタとなる。

_{時間(}振動(外力一定)による軸力低下

・振動と各種ねじの軸力低下状態



振動(外カー定)による軸力低下まとめ

	特性		振動前			振動	协後	
	ねじ	Т	Ø	Tk	TR	η	Q'	q
	鉄小ねじ	19.0	150	0.32	15.0	78.9	118.9	79.3
	ばね	12.0	150	0.20	9.0	75.0	124.6	83.1
	ばね+平	12.0	150	0.20	6.5	54.2	89.9	59.9
	カップ	22.0	150	0.37	20.0	90.9	138.8	92.5
า)_	パワーロック	16.0	150	0.27	13.5	84.4	118.9	79.3
_	Sタイト	26.5	150	0.44	25.0	94.3	123.4	82.3
	カップタイト	39.0	150	0.65	31.0	79.5	120.0	80.0

(注) T:締め付けトルク (kgf・cm) Q、Q':軸力 (kgf) TR:戻しトルク (kgf・cm)

〇スベリ量による軸力低下

軸直角方向直線振動に対する残留軸力の変化

- ・スベリ量が或る限界値以上に なると軸力低下の進行が速く なる。
- ・小ねじとタップタイトねじでは 軸力低下傾向は大きく異なる。

ゆるみ防止用

リュ

NCグリップ®

NC-GRIP™

エポキシ系樹脂接着剤塗布型ゆるみ止めねじ

【ポイント】

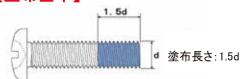
ねじに求められる機能で最重要課題は、耐ゆるみ性能です。

このニーズに対してエポキシ系樹脂の接着剤を塗布したゆるみ止めねじを紹介します。

マイクロカプセル化されたエポキシ樹脂をねじ部にコーティングした接着タイプのゆるみ止めねじです。ねじ込み時にマイクロカプセルが破壊され、エポキシ樹脂がにじみ出て硬化します。

【性能の特徴】

- 高い固着力で強力な ゆるみ止め効果を発揮
- ねじ部のどの位置でもロック効果を発揮
- 精密ねじにも対応可能
- 優れた耐振、耐熱、耐薬 品性
- 優れた硬化速度


NCグリップ標準加工サイズ

呼径: M1.4~M5 (ねじ支給の場合~M10)

特殊ねじの加工も承ります

(ホーローセット・中つばねじ・その他)

【塗布基準】

種類	色	耐熱限界温度	実用強度	最終実用強度
NCグリップ	黄	90°C	2〜4 時間	72時間

【使用事例】

車載ディスプレイ バッテリーパック ドアラッチ 小型カメラ

医療機器

変速機 遊技機

テレビ・プリンタ・冷蔵庫などの 各種家電製品など

【完全固着後の瞬間戻しトルク】

(単位: N·m)

		· —	
サイス゛	締付けトルク	瞬間戻し	しトルク
717	ボボリリフトノレン	塗布無し	NCグリップ
M1.4	0.11	0.07	0.10
M1.6	0.14	0.09	0.14
M1.7	0.21	0.15	0.22
M2.0	0.38	0.28	0.42
M3.0	0.74	0.54	0.90
M4.0	1.70	1.20	1.90
M5.0	3.59	2.35	3.85

- ●瞬間戻しトルクとは、ねじを締付け、72時間経過した後、ねじを戻したときのトルクです。
- ●M1.4、M1.6、M1.7は焼入れを施したねじです。

技術データは実測値であり、保証値ではありません。

【耐薬品性試験】

試験条件:ボルトM10、ナットM10、締付トルク30N・m

試験評価:接着剤が硬化後、薬品に浸漬してからゆるめトルクを測定。 ねじ締付後25℃×72時間静置し、

95℃×7日間薬品に浸漬後ゆるめトルクを測定。

(単位·N·m)

		(+ i= :
浸漬薬品	温度×期間	戻しトルク
ブランク	25°C×7日	41
水	95℃×7日	41
エンジンオイル	95℃×7日	47
ギヤオイル	95℃×7日	44
エチレングリコール	95°C×7⊟	44

●各種薬品につけて、ゆるめトルクを測定した結果、安定したトルクが得られました。 技術データは実測値であり、保証値ではありません。

R

ゆるみ防止用

ロングロック

スクリュー

Long-Lok®

樹脂インサート型ゆるみ止めねじ

【ポイント】

現在、製品の品質、安全性が高まる中、ねじのゆるみ止め指向は 一段と強まり、高度ファスニング技 術が要求されています。

このニーズに対して、おねじ部の 切削溝にポリアミド樹脂(PA)を圧 入した製品を紹介します。

めねじにねじ込むとナイロンがおねじとめねじの隙間に押し拡げられ、ここにナイロンの弾性カによる摩擦抵抗が生じます。

同時におねじはナイロン圧入部 と反対側のめねじ面に押しつけられ、摩擦抵抗を高め、強力な ゆるみ止め効果が得られます。

ロングロック標準加工サイズ 呼径:M1.0~M5 (ねじ支給の場合~M12)

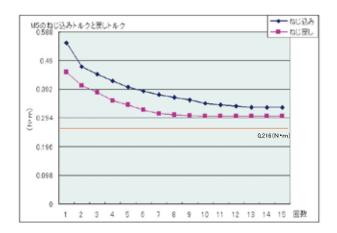
【性能の特徴】

- ゆるみ止め効果の高い 信頼性締結を実現
- 広範囲のおねじに適用 可能
- 再使用でもゆるみ止め 効果が持続

【ナイロンの材質】

一般の用途:

ポリキャップナイロン (グリーン)


使用温度範囲:-85~120℃

【使用事例】

自動車 めがね モーター軸止めねじ 楽器 スノーボード

【ゆるみ止め性能】

【試験方法】 JIS1級のナットを対象ねじの首下までねじ込み、また抜き取る。 この動作を連続して15回繰り返す。

※より高い戻しトルクを求められる場合は、2本以上のナイロン圧入もできます。

- ※下記のような場合は、お見積もり前にご相談下さい。
 - ・通常の場合の工程は、鍍金処理後、溝入れ加工を行います。 溝部にも表面処理が必要な場合、溝部を加工後、表面処理を行い、 ナイロンを圧入することも可能です。
 - ・熱処理を施した製品へのロングロック加工も場合により可能です。事前に硬度をご連絡ください。

(単位:N·m)

最大トルク	最低戻しトルク
0.176	0.049
0.225	0.049
0.255	0.049
0.294	0.059
0.421	0.059
0.676	0.118
0.931	0.157
1.225	0.176
1.695	0.216
2.969	0.392
6.860	0.764
9.800	1.215
	0.176 0.225 0.255 0.294 0.421 0.676 0.931 1.225 1.695 2.969 6.860

米国軍用規格 MIL-F-18240C(ASG) に規格化されています。

ねじ成形粉摩擦粉粘着スクリュー

CPグリップ®

CP-GRIP®

PAT

ねじ部の摩擦やセルフタップで発生する粉の粘着を実現!!

【ポイント】

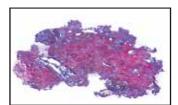
IT技術は、携帯電話をはじめとしたモバイル機器、家電製品、自動車、住宅など広範囲に活用されており、これらの電子機器の回路には精緻なプリント基板が使用され、よりコンパクトな設計が常となっています。

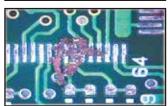
プリント基板はアルミ材やマグネシウム合金の筐体にねじ止めされているのが一般的でセルフタップを嫌うためタップ加工を行い小ねじが使用されています。CPグリップはセルフタッピンねじでの粉の粘着を実現し、トータルコストの低減に貢献すると共に、小ねじに塗布して、より完全な粉飛散防止を図ることも可能です。

【CPグリップとは】

オイル系粘液を封入したマイクロカプセルを予め、ねじ等(セルフタッピンねじ、小ねじ、ボルトなどファスナー類)の挿入部先端部分に塗布(プレコート)します。この塗布されたファスナー類をCPグリップと総称します。

CPグリップねじを相手材の下穴やめねじにねじ込みを行った場合、マイクロカプセルが破壊して粘液がにじみ出し、めねじ成形粉や摩擦粉を粘着し、粉の飛散や落下を防止する効果を発揮します。




・CPグリップのプレコート液塗布状態

・5回程度使用した時の粉の粘着状態

※この写真は、プレコート液塗布状態をわかりやすく見せる ため、六価クロメートでのねじサンプルを使用しております。

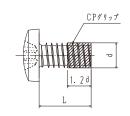
①貫通穴で押し出された粉(x75)

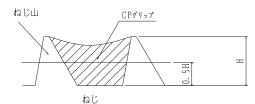
- ・金属片はプレコート液内に粘着されています。
- ・金属片の連結が、バインダと内包液で阻止されています。
- 実験では、圧縮しても導通しませんでした。

②電子回路での加圧導通実験(x 25)

- いろいろなパターンを実験してみましたが、導通しませんでした。
- ・落下する粉の重量は0.1g以下がほとんどです。
- ・但し、プレコート液内に粘着されない乾いた 粉は注意を要します。ご使用の際には、ご 確認をお願いします。

【プレコート液の特徴】

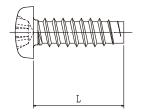

マイクロカプセル カプセル粒径 100 μm 水溶性バインダ使用で環境負荷を 考慮しています。 ・カプセル内包液 オイル系粘液

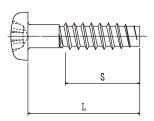

粘度 約200 CP (25°C) 引火点 260 °C 流動点 —10 °C

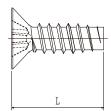
加 動板腐蝕性 A1(100°C 3 Hr)JIS K 2513による 樹脂 応力腐食性試験(ストレスクラッキング性)

非結晶性樹脂による楕円法で特に異常なし

【塗布目安】




・長さ=約1.2d


·厚さ=約0.5H~1.0H

※塗布部外径はねじ外径より太くなります。

L寸法表

精密ねじ(十字穴0番)用

長さし		テーパー無し(標準仕様)			
基準寸法	許容差	1.4	1.7	2	
1.4					
1.6	0				
(1.8)	-0.2	0%			
2	/ 0 \	0%	0%		
(2.2)	(-0.3)	0	0%	0%	
2.5		0	0	0%	
(2.8)		0	0	0	
3		0	0	0	
3.5		0	0	0	
4	0	0	0	0	
4.5	-0.3	0	0	0	
5	(0)	0	0		
5.5	\-0.4 /		0	0 0	
6			0	0	
8				0	
10					

長さし		テーパー付き(特殊仕様)			
基準寸法	許容差	1.4	1.7	2	
1.4					
1.6	0				
(1.8)	-0.3				
2	(0 \	0%			
(2.2)	$\begin{pmatrix} 0 \\ -0.4 \end{pmatrix}$	0%			
2.5		0%	0%		
(2.8)		0%	0%		
3	·	0	0	0%	
3.5		0	0	0	
4	0	0	0	0	
4.5	-0.4	0	0	0	
5	(0)	0	0	0	
5.5	(-0.5)		0	0	
6			0	0	
8				0	
10					

- L寸法に()を付けたものは特殊品扱いのため金型が必要です。
- ●テーパー付きは、特殊品扱いのため金型が必要です。
- ●Bタイト・Sタイト以外のL寸法公差については、上記()内公差を適用します。
- ●頭部形状は、日東精工㈱精密ねじ規格に準じます。
- ●※印は皿頭には適用しません。
- 但し、アルミタイトはガイド部長さ約2山とします。その為、最短し寸が上記の表と は異なります。

JIS規格頭用

	呼び径	2	2.6	3	4	5	6	呼び径	
	4	0			-			4	
	5	0	0%	0%		_	5		
	6	0	0	0**	0%			6	
	8	0	0	0	0	0%	0%	8	
nstr	10	0	0	0	0	0%	0%	10	nstr
呼び	12	0	0	0	0	0	0%	12	呼び
長	14	(8)	0	0	0	0	0	14	長
さ	16	(10)	(13) O O	0	0	16	さ		
L	20	(12)	(14)	(14)	0	0	0	20	L
_	25			(16)	(17)	0	0	25] -
	30			(16)	(22)	(20)	0	30	
	35				(22)	(25)	(25)	35	
	40				(22)	(20)	(30)	40	
	50					(25)	(30)	50	

- ●太線のワク内は呼び径に対し推奨するL寸法です。また○印のサイズは全ねじを示し数字記入のサイズは半ねじとし、()内の数字はS寸法を示します。
- ●※印は皿頭には適用しません。
- ●※※印は小ねじピッチ以外の皿頭には適用しません。
- ●L寸許容差は右表に示す通りです。 半ねじの場合のS寸法の許容差は小ねじピッチ品が+3/0山とし、それ以外は+2/0山 とします。
- ●首下不完全ねじ部は2山以下とします。
- ●上表以外の呼び径、L寸、半ねじについては、金型が必要です。

Lの区分	許容差
16以下	0 -0.8
16をこえ36以下	0 -1.2
36をこえるもの	0 -1.6

タップタイトの締付け自動化を サポートします

ねじを知りつくした日東精工のねじ締め機シリーズ。 豊富なラインナップでハンディ作業からロボットシステムまで、快適で効率よい締結作業を実現します。

ハンディねじ締め機

片手作業でねじ締めラクラク

手作業でのねじ締めを快適に、効率 よく行うことができるハンディ型自 動ねじ締め機です。ねじ供給機より、 ねじはドライバ先端チャックまで 瞬時にエア圧送され、効率よく連続 締結が行えます。

- ●片手操作で1分間に最大30本のねじ締めが行えます。 (ねじサイズや頭部形状により異なります。)
- ●自動車業界をはじめ、あらゆる業界に豊富な実績を誇ります。

多軸ねじ締め機

同時に複数のねじを高速締結

2本以上のねじを同時締結できる多 軸自動ねじ締め機です。同時締結に より、作業時間の大幅短縮化、片締 めのない高品質締結を実現します。 自動化ラインのユニットとしても高 い信頼性があり、水平方向へのねじ 締めも可能です。

- ●2~6本のねじを同時に締結します。 7本以上のねじ締めについても対応 します。
- ●ドライバ部は各軸独立しており、 ワーク条件に柔軟に対応できます。

単軸ねじ締めユニット

ロボットに、ラインに、取付け簡単

ロボット搭載用ねじ締めユニット、自動化 ライン用ユニットとして数多くの実績を 誇ります。

小型、軽量で取付け、取扱いが容易です。

- ●ドライバ、供給機、コントローラ等全て セットしており、導入即戦力です。
- ●ねじサイズや用途に合わせて豊富に 機種をラインアップしています。

ねじ締めロボット

ねじメーカーのノウハウが活かされた ねじ締め専用ロボット

直交座標型、Y θ (直進+旋 回)型、横締め、2軸締め、卓 上型など多彩なラインアップ を揃えています。

また、ねじ締めの推力を制御 できるZ軸を搭載した機種も あり、材質や用途に応じた最 適なねじ締めが行えます。

特長

- ■コントローラ、ねじフィーダを セットしており即戦力です。
- ●KXドライバを標準装備しています。
- ●用途に応じた機種ラインアップを揃えます。

曰東淵互牒式会社 ファスナー事業本部

ファスナー事業本部 本社工場 ファスナー事業本部 八田工場

東日本支店

中部支店

西日本支店

〒623-0054 京都府綾部市井倉町梅ヶ畑20番地 〒623-0116 京都府綾部市下八田町菩提10番地

〒222-0033 神奈川県横浜市港北区新横浜3-9-18 新横浜TECHビルA館/5F

〒465-0025 愛知県名古屋市名東区上社5丁目405番

〒578-0965 大阪府東大阪市本庄西1丁目6番4号

TEL (0773)42-8020 FAX (0773)42-2550 TEL (0773)42-3125 FAX (0773)42-0609

TEL (045)620-5558 FAX (045)620-5392

TEL (052)709-5062 FAX (052)709-5065 TEL (06)6745-8360 FAX (06)6745-8372

技術相談・お問い合わせはフリーダイヤル またはホームページをご利用ください

0120-210-437 FAX 0773-42-2551 https://www.nittoseiko.co.jp/