Loose-Proof Screw for Plastics

GIZATITE resists loosening due to temperature fluctuation, vibration & stress relaxation.

[Outline of GIZATITE]

Using conventional self-tapping screws to fasten plastic components has always been a problem. The different expansion rates of metal and plastic eventually cause a fall-off in plastic elasticity around the threads. This causes the clamping force to drop and the screw to loose.

GIZATITE has finally solved the problem through the use of four angular recesses on the circumference of each thread. These recesses provide an area into which the plastic can expand and shrink. **GIZATITE** doesn't lose its bite, and it doesn't losen. **GIZATITE** is especially effective in applications that encounter severe temperature fluctuations and vibration.

GIZATITE®

[Performance of GIZATITE]

1. Torque data at different pilot hole diameter

Screw Size Liner Workpiece		: 6X25 : SPC : PP +	5 C t=1.4 · G30%	mm				Unit : N • m		
	Pilot Hole Dia.		Torque Data			A	TS max.	Drive-to -strip-	Proper Tightening Torque : Tf	
			1	2	3	Ave.	TM min.	torque ratio	(TS max.×1.5~ TM min.×0.65)	
-	¢5.1	TS	1.75	1.50	1.80	1.68	1.80	4.500	Tf = 2.70 ~ 5.27	
		ТМ	8.10	8.20	8.20	8.17	8.10			
	φ5.2	TS	1.50	1.25	1.40	1.38	1.50	5.100	Tf = 2.25 a. 4.07	
		ТМ	8.00	7.65	8.00	7.88	7.65		11 - 2.25 ~ 4.97	
	φ5.3	TS	1.35	1.35	1.30	1.33	1.35	F 250	Tf = 2.02 + 4.62	
		ТМ	7.25	7.30	7.10	7.22	7.10	5.259	11 - 2.03 ~ 4.02	
	φ5.4	TS	1.00	1.12	1.20	1.11	1.20	5.233	$T_{1} = 4.00 + 4.00$	
		ТМ	6.70	6.28	6.62	6.53	6.28		$11 = 1.00 \sim 4.00$	
	φ5.5	TS	1.00	0.80	0.85	0.88	1.00	5.600	Tf = 1 50 2 64	
		ТМ	5.73	5.60	5.82	5.72	5.60		11 - 1.00 - 5.04	

% TS : Installation torque TM : Stripping torque Drive-to-strip torque ratio (=TM min. / TS max.)

2. Breaking torque

					one in m	
Dilot holo dia	Tightening	Actual brea	king torque	Avorago	Loosening torque ratio	
	torque	Sample 1	Sample 2	Average		
φ5.1	3.0	2.60	2.50	2.55	85.0%	
φ5.2	3.0	2.20	2.20	2.20	73.3%	
ϕ 5.3	3.0	1.90	2.10	2.00	66.7%	
φ5.4	3.0	1.90	1.90	1.90	63.3%	
ϕ 5.5	3.0	1.80	1.80	1.80	60.0%	

3. Load carrying capability

					Unit : N				
Workpiece	Upper : Pilot hole dia. Lower : Holding power								
DD+C30%	φ5.1	φ5.2	φ5.3	φ5.4	φ5.5				
11.03070	7,310	6,675	6,375	6,075	5,155				

NITTO SEIKO CO., LTD.

*Trademarks which attached "®" are registered in Japan and/or other countries.

578-0965, Japan

1-6-4, Honjo-nishi,

Higashiosaka, Osaka,

- Tel : 81-6-6745-8392 Fax : 81-6-6745-8372 E-mail : sales@nittoseiko.co.jp
- URL : http://www.nittoseiko.co.jp/

Unit : N • m