カラーレスタイト締付けの解析

八木澤 正史 Tadashi Yagisawa 研究開発部

1. はじめに

カラーレスタイトは、同軸上に呼び径が異なりピッ チが共通な2種類のねじ山を有し、樹脂素材で成る被 締結材と相手材の双方にセルフタップ締付けを行うこ とにより、金属カラーやインサートナットを不要とす る当社オリジナルのねじである。セルフタップ締付け とは、めねじ加工が施されていない下穴に、ねじ自身 のねじ山(おねじ)でめねじを形成しながら行う締付 けであり、軸力がなくてもおねじ-めねじ間を拘束す る力が働く。カラーレスタイトでは、セルフタップ締 付けを被締結材と相手材の双方に行うので、樹脂素材 に顕著なクリープ特性(応力緩和)や熱膨張係数差に よる軸力低下が発生¹¹しても、被締結材にはガタつき や緩みは発生しない。

また,カラーレスタイト締付けでは,相手材への締 付けが被締結材への締付けに先行する。このことによ り,被締結材へのセルフタップ時に,被締結材と相手 材が密着し,着座後の増締めによって被締結材と相手 材の間にも締結力が発生する。

2. 解析の背景

カラーレスタイト締付けには二つの特徴がある。

第一の特徴は、相手材だけでなく、被締結材にも締 付けを行うことである。通常の締結では、被締結材に はねじ部を設けず、増締め時にねじに発生した軸力に より、被締結物をねじ座面と相手材の間に挟み込み、 固定(締結)する。それに対し、被締結材にもねじ部 を設けると、増締め時にねじ座面と被締結材との間に のみ締結力が発生し、被締結材と相手材との間には締 結力が発生しない場合がある。被締結材と相手材との 間に締結力が発生するか否かは締付け条件によって変 わり、カラーレスタイト締付けでは締結力が発生する。

第二の特徴は,被締結材と相手材へセルフタップ締 付けすることである。セルフタップ締付けでは,軸力 が発生していない場合でも,被締結材や相手材に形成 されるめねじ部と,ねじのおねじ部とを固定する力(拘 束力)が発生する。この拘束力は,軸力による締結力

図-1 解析例(左:光弾性 右:FEM)

とは発生原理が異なる。

本報では,カラーレスタイトにおいて,被締結材-相手材間に締結力が発生する仕組みと,セルフタップ 締付け時の拘束力についての解析(図-1)を行う。

3. 解析に用いる手法

3.1 光弾性効果を利用した応力観察

透明弾性体(等質等方性体)は、複屈折性(光が入 射したとき二つの屈折光が現れる性質)を持たない。 しかし、外力が加わり応力を生じると、一時的に光学 的異方性を示し、複屈折現象を生じる。この現象を光 弾性効果(photoelastic effect)という。

平板の試料に垂直に偏光を入射させた場合, 複屈折 によって分かれた2光波の通る経路内の主応力がそれ ぞれ σ_1 , σ_2 であるとすると, 2光波の位相差は主応 力差($\sigma_1 - \sigma_2$)に比例する。これをBrewsterの法則 という²⁾。

$$\Delta = \operatorname{ct} (\sigma_1 - \sigma_2) \qquad (1$$

Δ:複屈折された2光波の光路差
c:材料の光弾性係数
t:材料の板厚
(σ₁-σ₂):平板の面内に生じた主応力差

上式は平板の面内に2次元的に表れた応力の場合で

あり,ねじ締め状態を側面から観察する場合には,光 路中の応力状態が積分される。

光弾性の実験装置には幾つかの構成があり,測定装 置として市販されているものもあるが,当社では**写** 真-1のような簡易的な装置を応力観察に利用してい る。この装置は,白色を表示させた液晶画面を偏光光 源とし,観察物の透過光を偏光フィルタ付きカラーカ メラで撮影し,画像をパソコンに取り込んでいる。光 路差により二つの光波が干渉し,等応力面毎に色分け された虹色の干渉画像が得られる。

写真-1 光弾性観察装置

3.2 FEM 解析を用いた応力解析

物体内部の応力分布や変位分布などを調べる数値的 手法としてFEM (Finite Element Method) 解析があ る。当社では、2013年度に塑性変形解析用FEMソフ トであるDeform3D (Scientific Forming Technologies Corporation社製)を導入し、鍛造品の成形過程解析 などに利用している。

FEM解析では、物体を有限個の微細な要素に分割 するが、要素数が多くなるに従い、演算時間が増加す る。そのため軸対称部品の圧造解析などでは、対称面 で分割した4分割モデルなどを用いる³⁾。しかし、螺 旋状のねじ山を持つねじには対称面はなく、分割モデ ルを用いることができない。そのため、本例ではフル モデルで解析を行った。

4. 解析結果

4.1 締結力の発生する仕組み

4.1.1 重ねたアクリル板の締付け

写真-2は厚さ5mmのアクリル板を2枚重ね, M4 のタップを立て, そこにM4ボルトを2.5Nmのトルク で締め付けた場合の光弾性画像である。写真-2(a) は重ねたアクリル板を密着させた状態で,写真-2(b) は0.3~0.5mm程度の隙間が空いた状態でタップを立 てたものである。写真-2(a)では座面と上板めね じ部の間だけでなく,上板下面と下板めねじ部の間に も応力が発生している。写真-2(b)では上下板間 にはほとんど応力は見られず,上板下面に僅かに応力 が現れているのみである。

(a) (b) 写真-2 重ねたアクリル板の締付け

4.1.2 ボルトナット締付けの FEM 解析

前項の光弾性実験は、めねじを有する二つの相手材 を重ね、M4小ねじで締め付けた場合でも、着座時に 相手材間に隙間がなければ、締結力が発生することを 示している。そこで続いて、FEM解析を用いて軸力 が発生する仕組みの解明を目指した。

解析は、弾塑性体の鋼製ナットに弾塑性体の鋼製ボ ルトをセットし、ボルト頭に剛体のソケットレンチを 嵌合した状態を初期状態(Step0)とし、3.6秒で1回 転(1.745rad/sec)する回転速度で増締めする過程に ついて、解析間隔を1msec(1msec/Step)として行っ た。Step0ではボルト座面はナット上面に接している が、おねじ、めねじ間にクリアランスがあり締結状態 とは言えない。なお、ナットは回り止めとして外周面 のXY軸を拘束し、Z軸は拘束しない。各モデル詳細 は**表-1**のとおりである。

表-1 ボルト・ナット締付け解析モデル

		1	
モデル	ソケット	ボルト	ナット
モデルタイプ	剛体金型	弾塑性体	弾塑性体
要素タイプ	ポリゴン	四面体	四面体
材質		S45C相当	S45C相当
初期要素数	2,902	57,832	上30,477
			下30,342
終了時要素数	2,902	54,455	上30,477
			下29,433

図-2はナットが一つの場合の解析結果である。ボ ルトは解析開始より14msec後のStep14にクリアラン スのない締結状態(着座)となり,図に示すStep114 は10°増締めした状態である。図-2(a)は軸方向 変位であり,図-2(b)は軸方向応力である。ねじ ピッチは1mmであり,ボルト,ナットに変形がなけ れば,10°の回転でナットは約0.028mmだけ座面側 (上方)へ引き寄せられる。実際にはボルト,ナット 共に不均一に変形し,ナット下面の軸方向変位は0~ -0.001mm,ナット下に出たボルトねじ部の軸方向変 位は約-0.01mmである。この解析結果から,着座時に ナットの下方0.017mm未満の位置に第二のナットがあ れば,10°の増締めで締結力が発生すると考えられる。 なお,ボルトとナットの嵌合部には径方向や回転方向 の変形もある。

図-3 ボルト締付け時(ナット2個)断面分布

図-3はナットが二つ密着して存在する場合の解析 結果である。ボルトはStep14に着座し,Step114は10° 増締めした状態である。第二のナットの存在により, ボルトの伸びが増え,ボルト内部には先端近くまで軸 方向応力(軸力)が発生しており,二つのナット間に は締結力が発生している。

4.1.3 カラーレスタイト締付けの光弾性画像

写真-3はカラーレスタイト締付けの光弾性画像で ある。被締結材,相手材ともにポリカーボネイトであ る。ポリカーボネイトは光弾性係数が大きく,応力変 化が表れやすい反面,残留応力の影響も大きい。**写真** -3 (a) に見られる虹色模様は残留応力と冶具の影 響による初期応力である。

相手材(下側)へ3回転ほどねじ込まれた状態の写 真-3(b)では、セルフタップにより相手材内部に 応力変化が表れている。写真-3(c)では更に大き な応力変化が相手材に見られるが、被締結材はねじ込 み開始前であるので変化はない。写真-3(d)では、 相手材へのねじ込みの推進力により、上部ねじ山が被 締結材に押し付けられ、セルフタップ用の推力が発生 している。写真-3(e)では被締結材と相手材間に も応力が発生している。着座、増締めすることにより、 写真-3(f)のように大きな締結力(編模様の間隔が 狭いほど応力が大きい)が発生している。

写真-3 カラーレスタイト締付け光弾性画像

4.1.4 カラーレスタイト締付けの FEM 解析

厚さ7mmの樹脂素材と厚さ16mmのアルミニウム素 材を重ね、長さ22mmのカラーレスタイトを締め付け る過程のFEM解析を行った。

図-4は解析モデル(着座時)であり,相手材の上 に被締結材を重ね,剛体金型のカラーレスタイトを締 め付ける。解析は,剛体金型であるカラーレスタイト の先端が相手材に接する状態を初期状態(Step0)とし, 並進1.588mm/sec,回転6.28rad/secの速度でセルフ タップし,着座後は並進速度0として増締めする過程 について,解析間隔を1msec(1msec/Step)として行っ た。相手材と被締結材は,締付け開始から着座直前ま では,剛塑性体とし,着座直前から増締め完了までは 弾塑性体とした。なお、回り止めとして被締結材およ び相手材の外周面のXY軸を拘束し、Z軸は拘束しな い。ただし、開始から1回転の間は相手材底面のZ軸 も拘束した。各モデル詳細は**表-2**の通りである。

図-4 解析モデル (左:俯瞰図 右:断面図)

モデル	カラーレス タイト	被締結材	相手材
モデルタイプ	剛体金型	剛塑性体	剛塑性体
増締め時		弾塑性体	弾塑性体
要素タイプ	ポリゴン	四面体	四面体
材質		GFRP	A1070
初期要素数	291,390	49,710	81,153
切替時要素数	291,390	44,635	82,321
終了時要素数	291,390	52,164	84,718

図-5 材料特性図(左:A1070 右:樹脂)

図-5は相手材(純アルミニウムA1070材)と被締 結材(ポリアミド6系GFRP材)の材料特性図(S-Sカー ブ)である。樹脂素材の粘弾性やクリープ特性は扱っ ていない。

図ー6はStep8,380の完全着座(頭部座面全面が被締結材に密着)後に相手材を削除し,被締結材のみで60 ステップ(0.06秒)増締めした場合の解析結果であり, 着座から21.6°増締めした状態である。ねじピッチが 1.588mmであるので,被締結材は約0.095mm座面側(上 方)へ引き寄せられるはずであるが,めねじ部周辺の 変形に留まり,底面はほとんど変形していない。

相手材のある場合には、相手材は増締めのねじ回転 に従ってねじのリード角に応じて座面側へと引き寄せ られる。図-7は図-6と同様に着座後に21.6°増締め した状態である。相手材めねじ面は約0.095mm座面側 へ引き寄せられる。しかし上方には、単体ではほとん ど変位しない被締結材下面があり、相手材の変位は制 限される。そのため相手材全体の変位は0.090mm程度 である。

一方被締結材は,相手材によって底面が押し上げら れ,(単体時と比べて)上方へと変位している。

被締結材と相手材が押し合うことにより, 被締結材 と相手材の境界面周辺の広い範囲に軸方向応力が発生 している。すなわち,被締結材と相手材との間に締結 力が発生している。

4.2 セルフタップねじの拘束力

通常のタップ加工は、下穴周辺の素材を削り取って めねじを形成している。それに対しカラーレスタイト を含むセルフタップねじの多くは、相手材の下穴周辺 を塑性変形させてめねじを形成する。相手材は弾塑性 体であり、塑性変形する際には必ず弾性変形を経由⁴⁾ しており、セルフタップ後には弾性変形による応力が ねじを抑え込み、ねじと相手材を固定する。この力が セルフタップねじの拘束力である。

光弾性実験に用いた樹脂材料は、変形が大きい場合 には応力が残留しやすく、拘束力となる弾性ひずみに よる応力の観察には適していない。そこで、FEM解 析を用いて拘束力を解析する。

図-8は前章の**図-7**と同様に着座後21.6° 増締めし た状態の相当応力と面圧である。

図-8 (a) の相当応力を見ると増締めによって生 じた応力分布が良く分かるが、ここには塑性変形によ る応力も含まれており、ここからねじの拘束力を読み 取ることはできない。

図-8 (b) の面圧を見ると、ねじ座面(非表示) と被締結材上面に生じている面圧、被締結物下面と相 手材上面に生じている面圧、およびおねじ(非表示) とめねじのフランク面に生じている面圧が見て取れ る。この面圧によりねじが拘束され、生じる摩擦力が ねじの緩め止めトルクとなる。ただし、図-8は、軸 力により発生した面圧が大きく、セルフタップによる 拘束力を読み取ることはできない。そこで、ねじを解 く解析を行い、軸力がない場合の拘束力を調べる。な お塑性変形割合の大きなセルフタップ解析では、摩擦 タイプはせん断摩擦(せん断応力に比例)としたが、 弾性変形主体のねじ解き解析では、クーロン摩擦(接触圧力に比例)とし、摩擦係数を鋼-GFRP間0.24、鋼-アルミニウム間0.36とした。

図-9は、着座後21.6°増締めした後に相手材を除去 し、被締結材のみとし、推力を加えずにねじを解く過 程におけるめねじ面の面圧とトルクである。図-9(a) は離座しておらず、軸力の影響によりめねじ面の上 側に150MPaを超える面圧が広範囲に表れ、トルクも 2.6Nmを超えている。図-9(b)は離座後半回転での 状態である。めねじ谷底近辺に150MPaを超える面圧 が散見され、トルクは約0.148Nmである。これがねじ 上部と被締結材間の拘束力である。なお、ねじ上部と 被締結材のひっかかり率は0.48、噛合山数は4である。

図-10 めねじ面の面圧(相手材のみ)とトルク

図-10は、着座後21.6° 増締めした後に被締結材を 除去し、相手材のみとした状態でねじを解く過程にお けるめねじ面の面圧とトルクである。ねじ座面下に被 締結材がないので軸力は働いていない。離座前、離 座後共に150MPaを超える面圧が広範囲に表れ、トル

クも1.9Nmを超えている。これがねじ下部と相手材間 の拘束力である。なお、ねじ下部と相手材のひっかか り率は0.48、噛合山数は8である。素材強度が大きく、 噛合山数が多いため, 被締結材に比べてねじの拘束力 は大きくなっている。

なお、図-9および図-10は変形解析結果であり、 熱伝達との連成解析はしていない。

図-11 めねじ面の面圧とトルク

図-11は、着座後21.6° 増締めした後に、ねじを解 く過程における被締結材および相手材のめねじ面の面 圧とトルクであり、熱伝達も含めた連成解析結果であ る。図-11 (a) は離座前であり, 被締結材, 相手材 ともに軸力の効果が大きく表れており、めねじ面の面 圧もトルクも大きい。図-11 (b) は離座後半回転の 状態であり、軸力がなくなっており、離座前に比べて 面圧は小さくなっているが、被締結材、相手材共に 150MPaを超える面圧が広範囲に表れ、トルクも1.8Nm を超えている。これが本解析条件において、被締結材 と相手材からカラーレスタイトに加わる拘束力であ る。

なお, 面圧やトルクは被締結材や相手材の材料特性 や組合せ、ねじのひっかかり率、あるいは摩擦状態な どの影響が大きく,解析結果の数値と実測値には相違 が生じることが予想される。

5. 今後の課題

前章の前半にて、共にねじ部を持つ二つの部材をね じで締結する場合に, 部材間に締結力が発生する仕組 みと条件を、光弾性実験とFEM解析を用いて調べた。 発生する条件には、締結される二つの部材の変形の仕 方が関係していた。従って、部材の材料特性や組合せ により,発生する締結力の大きさは変化する。また, 上部ねじおよび下部ねじの噛合山数やひっかかり率に も影響されると考えられる。

今後は、使用が予想される主な素材について、下穴 径(ひっかかり率)や噛合山数.および組合せを変え た解析と実験を行い、その傾向を理解し、顧客に適切 な提案ができるようにする必要がある。

次に後半部にて、セルフタップねじの拘束力につい てFEM解析を用いて調べた。この拘束力も材料特性 やねじのひっかかり率などの影響を受ける。従って. それらを変えた解析と実験を行い、その傾向を理解す る必要がある。

また、鋼製のねじを熱膨張係数の異なる軽金属や樹 脂素材にセルフタップ締付けする場合には、温度変化 の影響を考慮しなければならない。これについて、現 在は検討案件ごとに実際のワークを用いたヒートサイ クル試験が実施されている。しかし、セルフタップ締 付けにおいて、温度変化がどのように作用するかの知 見は十分でない。今後、各種解析法を用いた解明が望 まれる。

6. おわりに

当社では2013年度に塑性加工用FEM解析ソフト DEFORM-3Dを導入し、外部研究機関との共同研究 も実施しながら製品の改良などに役立ててきた。さら に本年度には、新規に金属加工業界向け生産プロセス シミュレーションソフトSimufact Formingを導入し た。今後は両者を用い、外部機関との連携も強化して 解析精度向上や適用対象の拡大を進め、当社製品の品 質や信頼性の向上に役立てていきたい。

〈参考文献〉

- 1) 酒井 智次「ねじ締結概論」 養賢堂, 2002, p.54-65
- 2) 河田 幸三「光弾性,光塑性の実験法」高分子,8巻3号, 1959, p.153-157
- 3) 山田 知典「初めての精密工学 FEMメッシュ の切り方」精密工学会誌 Vol.76, No11, 2010, 1244-1247
- 4) 柳本 潤「変形加工による変形形状制御 薄鋼板 の温間プレス成型-」生産研究, 59巻5号, 2007, p.45-55